Effect of spiromesifen on oxidative stress in bronchial epithelial cells
DOI:
https://doi.org/10.5281/zenodo.18494709Keywords:
Spiromesifen, Cytotoxicity, Oxidative stressAbstract
This study aims to investigate the cytotoxic and oxidative effects of Spiromesifen, a widely used new generation insecticide, on human bronchial epithelial cells, BEAS-2B. The colony formation test was conducted to assess the impact of spiromesifen on cell viability. The oxidative stress state was assessed by measuring Total Oxidative Stress (TOS), Malondialdehyde (MDA), and Glutathione (GSH) levels at concentrations of 12.5, 25, and 50 μM over time. The results indicated that spiromesifen treatment markedly diminished cell viability in a dose- and time-dependent manner with an IC50 value of 100 μM. Following 72 hours of treatment, a statistically significant elevation (p < 0.05) in TOS and MDA levels, indicative of lipid peroxidation, was seen across all concentrations. Conversely, GSH levels, integral to the cellular antioxidant defence system, were observed to be markedly diminished across all concentrations. This study concludes that spiromesifen displays cytotoxicity in human cells, alters cellular redox equilibrium by producing oxidative stress, and causes irreversible molecular damage through lipid peroxidation.
References
Alavanja, M. C. R., Dosemeci, M., Samanic, C., Lubin, J., Lynch, C. F., Knott, C., Barker, J., Hoppin, J. A., Sandler, D. P., Coble, J., Thomas, K., & Blair, A. (2004). Pesticides and Lung Cancer Risk in the Agricultural Health Study Cohort. American Journal of Epidemiology, 160(9), 876-885. https://doi.org/10.1093/aje/kwh290
Ataei, M., & Abdollahi, M. (2022). A systematic review of mechanistic studies on the relationship between pesticide exposure and cancer induction. Toxicology and Applied Pharmacology, 456, 116280. https://doi.org/10.1016/j.taap.2022.116280
Barthel, E. (1981). Increased risk of lung cancer in pesticide‐exposed male agricultural workers. Journal of Toxicology and Environmental Health, 8(5-6), 1027-1040. https://doi.org/10.1080/15287398109530135
Bielza, P., Moreno, I., Belando, A., Grávalos, C., Izquierdo, J., & Nauen, R. (2019). Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest Management Science, 75(1), 45-52. https://doi.org/10.1002/ps.5144
Bolognesi, C. (2003). Genotoxicity of pesticides: a review of human biomonitoring studies. Mutation Research, 543(3), 251-272. https://doi.org/https://doi.org/10.1016/S1383-5742(03)00015-2
Cerda-Apresa, D., Gutierrez-Rodriguez, S. M., Davila-Barboza, J. A., Lopez-Monroy, B., Rodriguez-Sanchez, I. P., Saavedra-Rodriguez, K. L., & Flores, A. E. (2024). Repurposing Insecticides for Mosquito Control: Evaluating Spiromesifen, a Lipid Synthesis Inhibitor against Aedes aegypti (L.). Tropical Medicine and Infectious Disease, 9(8), 184. https://doi.org/10.3390/tropicalmed9080184
EFSA, European Food Safety Authority (2012). Conclusion on the peer review of the pesticide risk assessment of the active substance spiromesifen. EFSA Journal, 10(10), 2879. https://doi.org/https://doi.org/10.2903/j.efsa.2012.2879
EPA, Environmental Protection Agency (2020). Spiromesifen. draft human health risk assessment in support of registration review. Retrieved from https://www.regulations.gov/document/EPA-HQ-OPP-2014-0263-0021
EPA, Environmental Protection Agency (2022). Spiromesifen interim registration review decision case number 7442. Retrieved from https://www.regulations.gov/document/EPA-HQ-OPP-2014-0263-0043
Fang, J., Wang, B., Fang, K., Liu, T., Yan, S., & Wang, X. (2022). Assessing the bioavailability and biotoxicity of spiromesifen and its main metabolite spiromesifen-enol (M01) reveals the defense mechanisms of earthworms (Eisenia fetida). Science of The Total Environment, 813, 151910. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151910
Garg, S., Huifu, H., Kaul, S. C., & Wadhwa, R. (2018). Integration of conventional cell viability assays for reliable and reproducible read-outs: Experimental evidence. BMC Research Notes, 11(1), 403. https://doi.org/10.1186/s13104-018-3512-5
Georgiou-Siafis, S. K., & Tsiftsoglou, A. S. (2023). The key role of GSH in keeping the redox balance in mammalian cells: Mechanisms and significance of GSH in detoxification via formation of conjugates. Antioxidants (Basel, Switzerland), 12(11), 1953. https://doi.org/10.3390/antiox12111953
Gollowitzer, A., Pein, H., Rao, Z. et al. (2025). Attenuated growth factor signaling during cell death initiation sensitizes membranes towards peroxidation. Nature Communications, 16, 1774. https://doi.org/10.1038/s41467-025-56711-2
Hassan, A. A., & Sayyah, S. G. (2023). Oxidative stress marker malondialdehyde and glutathione antioxidant in hypertensive patients. European Journal of Biomedical Research, 2(1), 31-36. https://doi.org/10.24018/ejbiomed.2023.2.1.47
Horibe, A., Odashima, S., Hamasuna, N., Morita, T., & Hayashi, M. (2018). Weight of contribution of in vitro chromosomal aberration assay for evaluation of pesticides: Experience of risk assessment at the Food Safety Commission of Japan. Regulatory Toxicology and Pharmacology, 95, 133-141. https://doi.org/https://doi.org/10.1016/j.yrtph.2018.02.013
Hussain, S., & Gaur, M. (2024). Tetronic acid and tetramic acid derived pesticides and their toxicity: a review. Sustainability, Agri, Food Environmental Research, 12(2), https://doi.org/10.7770/safer-V13N1-art654
Kangkhetkron, T., & Juntarawijit, C. (2024). Pesticide exposure and lung cancer risk: A case-control study in Nakhon Sawan, Thailand. F1000Research, 9, 492. https://doi.org/10.12688/f1000research.24114.8
Karakayali, E. M., Kekeç, D., Tuna, Ö., & Tuğlu, M. İ. (2021). Investigation of the moderate toxicity of agricultural pesticides cyantraniliprole, boscalid and spiromesifen in vitro using neurotoxicity screening test. Anatomy, 15(1), 1-10. https://doi.org/doi.org/10.2399/ana.21.91150
Kim, J.W., Lee, JY., Oh, M. & Lee, E.W. (2023). An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis. Experimental & Molecular Medicine, 55, 1620–1631. https://doi.org/10.1038/s12276-023-01077-y
Kontsedalov, S., Gottlieb, Y., Ishaaya, I., Nauen, R., Horowitz, R., & Ghanim, M. (2009). Toxicity of spiromesifen to the developmental stages of Bemisia tabaci biotype B. Pest Management Science, 65(1), 5-13. https://doi.org/10.1002/ps.1636
Pesatori, A. C., Sontag, J. M., Lubin, J. H., Consonni, D., & Blair, A. (1994). Cohort mortality and nested case-control study of lung cancer among structural pest control workers in Florida (United States). Cancer Causes & Control, 5(4), 310-318. https://doi.org/10.1007/BF01804981
Rajaee, F., Ghane-Jahromi, M., Maroofpour, N., & Sedaratian-Jahromi, A. (2022). Sublethal effects of spiromesifen on life table traits of Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus (Acari: Phytoseiidae). Acarologia, 62(3), 772-785. https://doi.org/10.24349/uja8-5ks2
Roos, W. P., Thomas, A. D., & Kaina, B. (2016). DNA damage and the balance between survival and death in cancer biology. Nature Reviews Cancer, 16(1), 20-33. https://doi.org/10.1038/nrc.2015.2
Ruiz-Guzmán, J. A., Gómez-Corrales, P., Cruz-Esquivel, Á., & Marrugo-Negrete, J. L. (2017). Cytogenetic damage in peripheral blood lymphocytes of children exposed to pesticides in agricultural areas of the department of Cordoba, Colombia. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 824, 25-31. https://doi.org/10.1016/j.mrgentox.2017.10.002
Serra, R. S., Cossolin, J. F. S., Resende, M. T. C. S. d., Castro, M. A. D., Oliveira, A. H., Martínez, L. C., & Serrão, J. E. (2021). Spiromesifen induces histopathological and cytotoxic changes in the midgut of the honeybee Apis mellifera (Hymenoptera: Apidae). Chemosphere, 270, 129439. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.129439
Smith, R. A., & Glynn, T. J. (2000). Epidemiology of lung cancer. Radiologic Clinics of North America, 38(3), 453–470. https://doi.org/10.1016/s0033-8389(05)70176-7
Şekeroğlu, Z. A., Şekeroğlu, V., & Küçük, N. (2021). Effects of reverse transcriptase inhibitors on proliferation, apoptosis, and migration in breast carcinoma cells. International Journal of Toxicology, 40(1), 52-61. https://doi.org/10.1177/1091581820961498
Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 524, 13-30. https://doi.org/https://doi.org/10.1016/j.ab.2016.10.021
Wang, M., Liu, J., Wang, H., & Hu, T. (2022). Spiromesifen contributes vascular developmental toxicity via disrupting endothelial cell proliferation and migration in zebrafish embryos. Pesticide Biochemistry and Physiology, 188, 105242. https://doi.org/10.1016/j.pestbp.2022.105242
Wang, Y., Yu, W., Li, S., Guo, D., He, J., & Wang, Y. (2022). Acetyl-CoA carboxylases and diseases. Frontiers in Oncology, 12, 836058. https://doi.org/10.3389/fonc.2022.836058
Yang, L., Yan, D., Yan, C., & Du, H. (2003). Peroxisome proliferator-activated receptor γ and ligands inhibit surfactant protein B gene expression in the lung. Journal of Biological Chemistry, 278(38), 36841-36847.
Yorulmaz Salman, S., & Kaplan, B. (2014). Resistance levels and detoxification enzymes against some acaricides in populations of Tetranychus urticae Koch (Acari:Tetranychidae) collected from tomato greenhouses in central district of Isparta province. Türkiye Entomoloji Bülteni, 4(3), 185-195. https://doi.org/10.16969/teb.99216
Zemski Berry, K. A., Murphy, R. C., Kosmider, B., & Mason, R. J. (2017). Lipidomic characterization and localization of phospholipids in the human lung. Journal of lipid research, 58(5), 926–933. https://doi.org/10.1194/jlr.M074955
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Optimum Science Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.


