Online first articles

Generalizations of Determinant Divisibility in Structured Matrices

Authors

DOI:

https://doi.org/10.5281/zenodo.18063828

Keywords:

Divisibility, Determinant, Matrices

Abstract

We study the divisibility properties of determinants in square matrices, with emphasis on structured integer matrices such as Toeplitz, circulant, and Vandermonde forms. We derive explicit conditions under which determinant divisibility follows from the underlying row or column construction rules, uncovering new algebraic relationships between matrix structure and determinant factors. The results extend earlier work on general integer matrices and provide a unified framework for analyzing determinant divisibility in structured settings. Although the probabilistic case of random matrices is noted as a potential direction, the present study focuses on deterministic classes. The findings contribute to a deeper theoretical understanding of determinant behavior and offer insights applicable to combinatorial matrix theory, number theory, and related mathematical disciplines.

References

Babarinsa, O., & Kamarulhaili, H., (2018, June). Quadrant interlocking factorization of hourglass matrix. In AIP Conference Proceedings of the 25th National Symposium on Mathematical Sciences (SKSM25): Mathematical Sciences as the Core of Intellectual Excellence. (Vol. 1974, No. 1) AIP Publishing. https://doi.org/10.1063/1.5041653

Bini, D. & Pan, V. Y., (1994), Polynomial and Matrix Computations, 1st ed. Birkh¨auser Boston, MA.

Burton, D. M., (2010), The history of mathematics: An introduction. 7th Ed., McGraw-Hill Education.

Chen, L. & Hong, S., (2020), Divisibility among determinants of power matrices associated with integer-valued arithmetic functions. AIMS Mathematics, 5(3), 1946-1959. https://doi.org/10.3934/math.2020130

Eves, H., (1990), An introduction to the history of mathematics. 6th Ed. Saunders College Publishing: Holt, Rinehart and Winston.

Feng, W. D., Hong S. F., and Zhao, J. R., (2009), Divisibility properties of power LCM matrices by power GCD matrices on GCD-closed sets, Discrete Math., 309, 2627-2639. https://doi.org/10.1016/j.disc.2008.06.014

Forrester, P. J., (2010), Log-gases and random matrices, illustrated ed. Princeton University Press.

Gray, R. M., (2006), Toeplitz and circulant matrices: A review. Foundations and Trends in Communications and Information Theory, 2(3), 155–239. https://doi.org/10.1561/0100000006

Higham, N. J. (2006). Functions of matrices: Theory and computation. CRC Press / Chapman & Hall.

Horn R. A., & Johnson C. R., (1994). Topics in matrix analysis, Cambridge University Press.

Kronecker, L., (1903). Vorlesungen über die theorie der determinanten, Erster Band, Bearbeitet und fortgeführt von K. Hensch, BG Teubner, Leipzig.

Li, M. & Tan, Q. R., (2011) Divisibility of matrices associated with multiplicative functions, Discrete Math., 311, 2276-2282. https://doi.org/10.1016/j.disc.2011.07.015

Pant, S., Dagtoros, K., Kholil , M. I., & Vivas, A. (2024). Matrices: peculiar determinant property. Optimum Science Journal, (1), 1–7. https://doi.org/10.5281/zenodo.11266018

Rezaifar, O. & Rezaee, H., (2007), A new approach for finding the determinant of matrices. Applied Mathematics and Computation, 188(2), 1445-1454. https://doi.org/10.1016/j.amc.2006.11.010

Tao, T., & Vu, V., (2009). Random matrices: Universality of local eigenvalue statistics. Acta Mathematica, 206(1), 127-2024. https://doi.org/10.1007/s11511-011-0061-3

Zhang, F., (2009), Linear algebra challenging problems for students, 2nd Ed. The Johns Hopkins University Press, Baltimore, Maryland, USA.

Downloads

Published

29.12.2025

How to Cite

Kholil, M. I., Pant, S., & Dagtoros, K. (2025). Generalizations of Determinant Divisibility in Structured Matrices. Optimum Science Journal. https://doi.org/10.5281/zenodo.18063828

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)