A review on Electrical Conductivity of Cu–graphene Nanocomposites in terms of Production Methods and Reinforcement Ratios
DOI:
https://doi.org/10.5281/zenodo.14876610Keywords:
Copper, GNPs, Metal Matrix Nanocomposites, ConductivityAbstract
Graphene is excellent material and is highly potent in terms of mechanical, electrical, optical, and thermal properties. Owing to these features, this material is used as a nanofiller for metal-based composites. Although many studies have focused on different attributes of graphene, the most remarkable is its electrical conductivity. In addition, copper, which exhibits one of the highest electrical conductivities among metal materials, is used in many different fields, especially in the electrical-electronics industry. Therefore, studies on the changes in the electrical properties of composites obtained using these two materials have expanded in recent years. In this study, the electrical properties of copper-graphene based nanocomposites produced using powder metallurgy are investigated. The changes in the electrical conductivity of the composites compared to the pure specimen are discussed in terms of graphene reinforcement and processing methods. The production methods and mixing techniques that achieve the most suitable electrical conductivity values have been comparatively evaluated. The graphene amount was considered in terms of production cost.
References
Akbarpour, M. R., Mirabad, H. M., Alipour, S. & Kim. H. S. (2020). Enhanced tensile properties and electrical conductivity of Cu-CNT nanocomposites processed via the combination of flake powder metallurgy and high pressure torsion methods. Materials Science and Engineering A 773. https://doi.org/10.1016/J.MSEA.2019.138888
Akhtar, F., Askari, S. J., Shah, K. A., Du, X., & Guo, S. (2009). Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites. Materials Characterization, 60(4), 327–336. https://doi.org/10.1016/j.matchar.2008.09.014
Ali, S., Ahmad, F., Yusoff, P. S. M. M., Muhamad, N., Oñate, E., Raza, M. R., & Malik, K. (2021). A review of graphene reinforced Cu matrix composites for thermal management of smart electronics. Composites Part A: Applied Science and Manufacturing, 144, 106357. https://doi.org/10.1016/j.compositesa.2021.106357
D. Almonti, Baiocco, G., Menna, E., Mingione, E., Rubino, G., & N. Ucciardello. (2022). Characterisation of Cu-GnP composite coatings for friction control and wear resistance applications. Engineering Failure Analysis, 139, 106419–106419. https://doi.org/10.1016/j.engfailanal.2022.106419
Ovid'Ko, I. A. (2014). Metal-graphene nanocomposites with enhanced mechanical properties: A review. Reviews on Advanced Materials Science, 38(2), 190-200.
Asgharzadeh, H., & Eslami, S. (2019). Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical properties of copper matrix composite. Journal of Alloys and Compounds, 806, 553–565. https://doi.org/10.1016/j.jallcom.2019.07.183
Binns, C. (2010). Introduction to Nanoscience and Nanotechnology. https://doi.org/10.1002/9780470618837
Callister Jr, W. D., & Rethwisch, D. G. (2020). Materials science and engineering: An introduction. John Wiley & sons.
Chen, F., Ying, J., Wang, Y., Du, S., Liu, Z., & Huang, Q. (2016). Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon, 96, 836-842. https://doi.org/10.1016/j.carbon.2015.10.023
Chen, Y., Zhang, X., Liu, E., He, C., Shi, C., Li, J., Nash, P., & Zhao, N. (2016). Fabrication of in-situ grown graphene reinforced Cu matrix composites. Scientific Reports, 6(1). 19363. https://doi.org/10.1038/srep19363
Chu, K., & Jia, C. (2013). Enhanced strength in bulk graphene-copper composites. Physica Status Solidi (A), 211(1), 184–190. https://doi.org/10.1002/pssa.201330051
Hansora, D. P., & Mishra, S. (2017). Graphene nanomaterials: fabrication, properties, and applications. Jenny Stanford Publishing. https://doi.org/10.4032/9781315364551
Dong, L. L., Fu, Y. Q., Liu, Y., Lu, J. W., Zhang, W., Huo, W. T., ... & Zhang, Y. S. (2021). Interface engineering of graphene/copper matrix composites decorated with tungsten carbide for enhanced physico-mechanical properties. Carbon, 173, 41-53. https://doi.org/10.1016/J.CARBON.2020.10.091
Elmgerbi, A., Les, B., Ashena, R., & Atkin, T. (2022). A practical decision tool to evaluate and rank potential solutions for expected downhole drilling problems during the well-planning phase. Journal of The Institution of Engineers (India): Series D, 103(1), 25-36. https://doi.org/10.1007/S40033-021-00325-7/FIGURES/12
Fahimi, N., & Abachi, P. (2021). The role of powder preparation route on physical and mechanical properties of Cu-rGO bulk nanocomposites. Materials Today Communications, 28, 102470. https://doi.org/10.1016/j.mtcomm.2021.102470
Fesenko, O., & Yatsenko, L. (2021). Nanomaterials and nanocomposites, nanostructure surfaces, and their applications. Springer International Publishing. 246. https://doi.org/10.1007/978-3-030-51905-6
Forati, T., Sharifi, N., Kaydanova, T., Ettouil, F. B., Moghimian, N., Pugh, M., Dolatabadi, A., & Moreau, C. (2021). Wetting and corrosion characteristics of thermally sprayed copper-graphene nanoplatelet coatings for enhanced dropwise condensation application. Carbon Trends, 3, 100018. https://doi.org/10.1016/j.cartre.2020.100018
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849
German, R. M. (2016). Particulate Composites. In Springer eBooks. Springer Nature. https://doi.org/10.1007/978-3-319-29917-4
Ghodrati, H., & Ghomashchi, R. (2019). Effect of graphene dispersion and interfacial bonding on the mechanical properties of metal matrix composites: An overview. FlatChem, 16, 100113. https://doi.org/10.1016/j.flatc.2019.100113
Grande, M. A., & Forno, I. (2016). Powder Metallurgy and precious metals: state of the art and future developments. Key Engineering Materials, 682, 239-244. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.682.239
Güler, Ö., & Bağcı, N. (2020). A short review on mechanical properties of graphene reinforced metal matrix composites. Journal of Materials Research and Technology, 9(3), 6808–6833. https://doi.org/10.1016/j.jmrt.2020.01.077
Guo, S., Zhang, X., Shi, C., Liu, E., He, C., He, F., & Zhao, N. (2019). Enhanced mechanical properties and electrical conductivity of graphene nanoplatelets/Cu composites by in situ formation of Mo2C nanoparticles. Materials Science and Engineering A, 766, 138365–138365. https://doi.org/10.1016/j.msea.2019.138365
Guo, S., Zhang, X., Shi, C., Zhao, D., Liu, E., He, C., & Zhao, N. (2021). Comprehensive performance regulation of Cu matrix composites with graphene nanoplatelets in situ encapsulated Al2O3 nanoparticles as reinforcement. Carbon, 188, 81–94. https://doi.org/10.1016/j.carbon.2021.11.054
Guo, Z. Q., Geng, H. R., Wang, B., Hao, Z. X., & Wang, Z. M. (2007). Influence of mischmetal on performance of copper based electric contact materials. Key Engineering Materials, Vol. 353-358, 1431-1434. https://doi.org/10.4028/www.scientific.net/kem.353-358.1431
Han, T., Liu, E., Li, J., Zhao, N., & He, C. (2020). A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study. Journal of Materials Science & Technology, 46, 21–32. https://doi.org/10.1016/j.jmst.2019.09.045
Han, T., Wang, F., Li, J., He, C., & Zhao, N. (2021). Effect of GNPs on microstructures and mechanical properties of GNPs/Al-Cu composites with different heat treatment status. Journal of Materials Science & Technology, 92, 1–10. https://doi.org/10.1016/j.jmst.2021.02.045
Hidalgo-Manrique, P., Lei, X., Xu, R., Zhou, M., Kinloch, I. A., & Young, R. J. (2019). Copper/graphene composites: a review. Journal of Materials Science, 54(19), 12236–12289. https://doi.org/10.1007/s10853-019-03703-5
Huang, G., Wang, H., Cheng, P., Wang, H., Sun, B., Sun, S., Zhang, C., Chen, M., & Ding, G. (2016). Preparation and characterization of the graphene-Cu composite film by electrodeposition process. Microelectronic Engineering, 157, 7–12. https://doi.org/10.1016/j.mee.2016.02.006
Iqbal, A. A., Sakib, N., Iqbal, A. K. M. P., & Nuruzzaman, D. M. (2020). Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia, 12, 100815. https://doi.org/10.1016/j.mtla.2020.100815
Jagannadham, K. (2012a). Volume fraction of graphene platelets in copper-graphene composites. Metallurgical and Materials Transactions A, 44, 552-559. https://doi.org/10.1007/s11661-012-1387-y
Jagannadham, K. (2012b). Electrical conductivity of copper–graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 30(3), 03D109. https://doi.org/10.1116/1.3701701
Jamwal, A., Mittal, P., Agrawal, R., Gupta, S., Kumar, D., Sadasivuni, K. K., & Gupta, P. (2020). Towards sustainable copper matrix composites: Manufacturing routes with structural, mechanical, electrical and corrosion behaviour. Journal of Composite Materials, 54(19), 2635–2649. https://doi.org/10.1177/0021998319900655
Janas, D., & Liszka, B. (2018). Copper matrix nanocomposites based on carbon nanotubes or graphene. Materials Chemistry Frontiers, 2(1), 22–35. https://doi.org/10.1039/c7qm00316a
Jeganmohan, S., Sugozu, B., Kumar, M., & Selvam, D. R. (2020). Experimental investigation on the friction and wear characteristics of palm seed powder reinforced brake pad friction composites. Journal of The Institution of Engineers (India): Series D, 101, 61-69. https://doi.org/10.1007/S40033-020-00210-9/TABLES/8
Jiang, R., Zhou, X., Fang, Q., & Liu, Z. (2016). Copper–graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties. Materials Science and Engineering: A, 654, 124–130. https://doi.org/10.1016/j.msea.2015.12.039
Jiang, R., Zhou, X., & Liu, Z. (2017). Electroless Ni-plated graphene for tensile strength enhancement of copper. Materials Science and Engineering: A, 679, 323–328. https://doi.org/10.1016/j.msea.2016.10.029
Ji, Y., Zhang, Y., Wang, Z., & Zhang, T. (2015). Infrared light-assisted preparation of Ag nanoparticles-reduced graphene oxide nanocomposites for non-enzymatic H 2 O 2 sensing. Materials Research Bulletin, 72, 184–187. https://doi.org/10.1016/j.materresbull.2015.07.025
Jones, G. R. (2013). Electrical Engineer’s Reference Book. Elsevier.
Kaiser, Md. S. (2017). Solution Treatment Effect on Tensile, Impact and Fracture Behaviour of Trace Zr Added Al–12Si–1Mg–1Cu Piston Alloy. Journal of the Institution of Engineers (India): Series D, 99(1), 109–114. https://doi.org/10.1007/S40033-017-0140-5/FIGURES/6
Katarkar, A. S., Majumder, B., Pingale, A. D., Belgamwar, S. U., & Bhaumik, S. (2020). A review on the effects of porous coating surfaces on boiling heat transfer. Materials Today Proceedings, 44, 362–367. https://doi.org/10.1016/j.matpr.2020.09.744
Katiyar, J. K., Hammad, J. A., & Mohammed, A. S. (2021). Tribological properties of light metal matrix composites. Encyclopedia of Materials: Composites, 389–401. https://doi.org/10.1016/b978-0-12-819724-0.00104-x
Khamaj, A., Farouk, W. M., Shewakh, W. M., Abu-Oqail, A. M. I., Wagih, A., & Abu-Okail, M. (2021). Effect of lattice structure evolution on the thermal and mechanical properties of Cu–Al2O3/GNPs nanocomposites. Ceramics International, 47(12), 16511–16520. https://doi.org/10.1016/j.ceramint.2021.02.219
Khobragade, N., Sikdar, K., Kumar, B., Bera, S., & Roy, D. (2019). Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion. Journal of Alloys and Compounds, 776, 123–132. https://doi.org/10.1016/j.jallcom.2018.10.139
Lasio, B., Torre, F., Orrù, R., Cao, G., Cabibbo, M., & Delogu, F. (2018). Fabrication of Cu-graphite metal matrix composites by ball milling and spark plasma sintering. Materials Letters, 230, 199–202. https://doi.org/10.1016/j.matlet.2018.07.120
Li, M., Hu, Q., Shan, H., Yu, W., & Xu, Z.-X. (2021). Fabrication of copper phthalocyanine/reduced graphene oxide nanocomposites for efficient photocatalytic reduction of hexavalent chromium. Chemosphere, 263, 128250. https://doi.org/10.1016/j.chemosphere.2020.128250
Lu, L. (2004). Ultrahigh Strength and High Electrical Conductivity in Copper. Science, 304(5669), 422-426. https://doi.org/10.1126/science.1092905
Luo, H., Sui, Y., Qi, J., Meng, Q., Wei, F., & He, Y. (2017). Copper matrix composites enhanced by silver/reduced graphene oxide hybrids. Materials Letters, 196, 354–357. https://doi.org/10.1016/j.matlet.2017.03.084
Murmu, U. K., Sahu, S., Ghosh, A., & Ghosh, M. (2022). Exploring possibilities for fabricating Cu–TiB2 composite through different Powder Metallurgy Routes. Journal of the Institution of Engineers (India): Series D, 104(1), 247–257. https://doi.org/10.1007/s40033-022-00369-3
Nan, C.-W., Rainer Birringer, Clarke, D., & Gleiter, H. (1997). Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 81(10), 6692–6699. https://doi.org/10.1063/1.365209
Ong, B. K., Poh, H. L., Chua, C. K., & Pumera, M. (2012). Graphenes Prepared by Hummers, Staudenmaier and Hofmann Methods for Analysis of TNT‐Based Nitroaromatic Explosives in Seawater. Electroanalysis, 24(11), 2085-2093. https://doi.org/10.1002/ELAN.201200474
Pingale, A. D., Belgamwar, S. U., & Rathore, J. S. (2020a). A novel approach for facile synthesis of Cu-Ni/GNPs composites with excellent mechanical and tribological properties. Materials Science and Engineering B, 260, 114643–114643. https://doi.org/10.1016/j.mseb.2020.114643
Pingale, A. D., Belgamwar, S. U., & Rathore, J. S. (2020b). The influence of graphene nanoplatelets (GNPs) addition on the microstructure and mechanical properties of Cu-GNPs composites fabricated by electro-co-deposition and powder metallurgy. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.02.728
Kumar, H. P., & Xavior, M. A. (2014). Graphene reinforced metal matrix composite (GRMMC): A review. Procedia Engineering, 97, 1033-1040. https://doi.org/10.1016/J.PROENG.2014.12.381
Qiao, Z., Zhou, T., Kang, J., Yu, Z., Zhang, G., Li, M., Lu, H., Li, Y., Huang, Q., Wang, L., Zheng, X., & Zhang, Z. (2018). Three-dimensional interpenetrating network graphene/copper composites with simultaneously enhanced strength, ductility and conductivity. Materials Letters, 224, 37–41. https://doi.org/10.1016/j.matlet.2018.04.069
Rajkumar, K., & Aravindan, S. (2013). Tribological behavior of microwave processed copper–nanographite composites. Tribology International, 57, 282–296. https://doi.org/10.1016/j.triboint.2012.06.023
Ranjan, R., & Bajpai, V. (2021). Graphene-based metal matrix nanocomposites: Recent development and challenges. Journal of Composite Materials, 55(17), 2369–2413. https://doi.org/10.1177/0021998320988566
Rashad, M., Pan, F., Tang, A., Asif, M., Hussain, S., Gou, J., & Mao, J. (2015). Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method. Journal of Industrial and Engineering Chemistry, 23, 243–250. https://doi.org/10.1016/j.jiec.2014.08.024
Saboori, A., Pavese, M., Badini, C., & Fino, P. (2018). A novel approach to enhance the mechanical strength and electrical and thermal conductivity of Cu-GNP nanocomposites. Metallurgical and Materials Transactions A, 49, 333-345. https://doi.org/10.1007/S11661-017-4409-Y
Salvo, C., Mangalaraja, R. V., Udayabashkar, R., Lopez, M., & Aguilar, C. (2019). Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites. Journal of Alloys and Compounds, 777, 309-316. https://doi.org/10.1016/J.JALLCOM.2018.10.357
Schlesinger, M. E., King, Matthew J., Sole, Kathryn C., & Schlesinger, Mark E. (2011). Extractive Metallurgy of Copper. Elsevier Science. 455.
Sen, M. S. E. M. (2020). Nanocomposite materials. Nanotechnology and the environment. IntechOpen. Rijeka, Ch. 6. https://doi.org/10.5772/intechopen.93047
Shao, G., Liu, P., Li, W., Chen, X., Ma, F., Liu, X., Zhou, H., & Zhang, K. (2020). Effects of graphene nanoplates on arc erosion resistance and wear behavior under electric current of copper matrix composites. Journal of Alloys and Compounds, 829, 154356–154356. https://doi.org/10.1016/j.jallcom.2020.154356
Si, X., Li, M., Chen, F., Eklund, P., Xue, J., Huang, F., Du, S., & Huang, Q. (2017). Effect of carbide interlayers on the microstructure and properties of graphene-nanoplatelet-reinforced copper matrix composites. Materials Science and Engineering: A, 708, 311–318. https://doi.org/10.1016/j.msea.2017.10.015
Utpat, V. S., & Kulkarni, S. G. (2022). Analysis of various machine learning algorithms for cast aluminium alloy to estimate fatigue strength. Journal of the Institution of Engineers (India): Series D, 104(1), 61–70. https://doi.org/10.1007/s40033-022-00381-7
Varol, T., & Canakci, A. (2015). Microstructure, electrical conductivity and hardness of multilayer graphene/Copper nanocomposites synthesized by flake powder metallurgy. Metals and Materials International, 21(4), 704–712. https://doi.org/10.1007/s12540-015-5058-6
Varol, T., Güler, O., Akçay, S. B., & Aksa, H. C. (2022). Novel advanced copper-silver materials produced from recycled dendritic copper powders using electroless coating and hot pressing. Powder Metallurgy, 65(5), 390–402. https://doi.org/10.1080/00325899.2022.2026031
Wang, X., Li, J., & Wang, Y. (2016). Improved high temperature strength of copper-graphene composite material. Materials Letters, 181, 309-312. https://doi.org/10.1016/j.matlet.2016.06.034
Xiong, D. B., Cao, M., Guo, Q., Tan, Z., Fan, G., Li, Z., & Zhang, D. (2015). Graphene-and-copper artificial nacre fabricated by a preform impregnation process: bioinspired strategy for strengthening-toughening of metal matrix composite. Acs Nano, 9(7), 6934-6943. https://doi.org/10.1021/ACSNANO.5B01067/ASSET/IMAGES/MEDIUM/NN-2015-01067H_0009.GIF
Yang, T., Chen, W., Zhang, H., Ma, L., & Fu, Y.-Q. (2022). In-situ generated graphene from wheat flour for enhancing mechanical and electrical properties of copper matrix composites. Materials Science and Engineering: A, 835, 142662. https://doi.org/10.1016/j.msea.2022.142662
Yao, G. C., Mei, Q. S., Li, J. Y., Li, C. L., Ma, Y., Chen, F., & Liu, M. (2016). Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding. Materials & Design, 110, 124–129. https://doi.org/10.1016/j.matdes.2016.07.129
Yu, T., Rodriguez, F., Schedin, F., Kravets, V. G., Zenin, V. A., Bozhevolnyi, S. I., Novoselov, K. S., & Grigorenko, A. N. (2022). Nanoscale light field imaging with graphene. Communications Materials, 3(1). https://doi.org/10.1038/s43246-022-00264-0
Zhang, J., & Han, J. H. (2022). Thermal properties and failure mechanism of graphene nanoplatelet-reinforced copper composites fabricated using electroless plating. Journal of Alloys and Compounds, 893, 162233. https://doi.org/10.1016/j.jallcom.2021.162233
Zhang, K., Shao, G., Li, W., Chen, X., Ma, F., & Liu, P. (2019). Wear and corrosion behavior of graphene-nanoplate-reinforced copper matrix composites prepared through electrostatic self-assembly. Journal of Materials Engineering and Performance, 28, 1650-1660. https://doi.org/10.1007/S11665-019-3882-4
Zhang, T. (2022). Graphene. In Springer eBooks. https://doi.org/10.1007/978-981-16-4589-1
Zhang, X., Xu, Y., Wang, M., Liu, E., Zhao, N., Shi, C., Lin, D., Zhu, F., & He, C. (2020). A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites. Nature Communications, 11(1), 2775. https://doi.org/10.1038/s41467-020-16490-4
Zhao, S., Zhao, Z., Yang, Z., Ke, L., Kitipornchai, S., & Yang, J. (2020). Functionally graded graphene reinforced composite structures: A review. Engineering Structures, 210, 110339. https://doi.org/10.1016/j.engstruct.2020.110339
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Optimum Science Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.