Simulation of Periodic 6-Point Shuriken Nano-Structures to Use in SPR Sensors

Authors

DOI:

https://doi.org/10.5281.zenodo.13754118

Keywords:

Plasmonics, LSPR, Nano-sensors

Abstract

Surface plasmon resonance or SPR, was first observed on the verge of the twentieth century. In late 60s and early 70s, simple methods to implement and excite surface plasmons were introduced. Since then, numerous applications have been proposed to utilize SPR, from biosensors to optical switches. This is due to the sensitivity of SPR to fine changes in the conditions of the environment (for example temperature or concentration), and its ability to work in real time. It is imperative to design and propose structures with different SPR properties to enable the possibility of tailoring devices to meet the needs of science and technology. The purpose of this study is to investigate nano sensors with a periodic 6-point shuriken structure to excite localized surface plasmons (LSPR). It is shown in this study that the aforementioned sensor can have a sensitivity of up to 600 nm/RIU, using Kretschmann configuration and silver nano particles.

References

Bruns, R., & Raether, H. (1970). Plasma resonance radiation from non radiative plasmons. Zeitschrift Für Physik, 237(1), 98–106. https://doi.org/10.1007/BF01400480/METRICS

Chen, S., Zeng, L., Li, J., Weng, J., Li, J., Guo, Z., Xu, P., Liu, W., Yang, J., Qin, Y., & Wen, K. (2022). Tunable plasmon-induced transparency with coupled L-shape graphene metamaterial. Results in Physics, 38, 105537. https://doi.org/10.1016/J.RINP.2022.105537

Gao, S., Wei, K., Yang, H., Tang, Y., Yi, Z., Tang, C., Tang, B., Yi, Y., & Wu, P. (2023). Design of Surface Plasmon Resonance-Based D-Type Double Open-Loop Channels PCF for Temperature Sensing. Sensors, 23(17), 7569. https://doi.org/10.3390/S23177569

Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1–2), 3–15. https://doi.org/10.1016/S0925-4005(98)00321-9

Kretschmann, E. (1971). Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen (The determination of the optical constants of metals by excitation of surface plasmons). Zeitschrift Für Physik, 241(4), 313–324. https://doi.org/10.1007/BF01395428/METRICS

Kruchinin, A. A., & Vlasov, Y. G. (1996). Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor. Sensors and Actuators B: Chemical, 30(1), 77–80. https://doi.org/10.1016/0925-4005(95)01752-H

Maier, S. A. (2007). Plasmonics: Fundamentals and Applications, Springer.

Otto, A. (1968). Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift Für Physik, 216(4), 398–410. https://doi.org/10.1007/BF01391532/METRICS

Rivero, P. J., Urrutia, A., Goicoechea, J., & Arregui, F. J. (2012). Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles. Sensors and Actuators B: Chemical, 173, 244–249. https://doi.org/10.1016/J.SNB.2012.07.010

Rossi, S., Gazzola, E., Capaldo, P., Borile, G., & Romanato, F. (2018). Grating-coupled surface plasmon resonance (GC-SPR) optimization for phase-interrogation biosensing in a microfluidic chamber. Sensors, 18(5), 1621. https://doi.org/10.3390/S18051621

San-Blas, A., Elshorbagy, M. H., Olaizola, S. M., Sanchez-Brea, L. M., Rodríguez, A., del Hoyo, J., Granados, E., Soria-Garcia, A., Pastor-Villarrubia, V., & Alda, J. (2023). Gold-coated split laser-induced periodic surface structures as refractometric sensors. Optics & Laser Technology, 157, 108669. https://doi.org/10.1016/J.OPTLASTEC.2022.108669

Severs, A. H., Schasfoort, R. B. M., & Salden, M. H. L. (1993). An immunosensor for syphilis screening based on surface plasmon resonance. Biosensors and Bioelectronics, 8(3–4), 185–189. https://doi.org/10.1016/0956-5663(93)85031-I

Sun, M., Song, Y., Wu, H., & Wang, Q. (2023). Design and simulation of Au/SiO2 nanospheres based on SPR refractive index sensor. Sensors, 23(6), 3163. https://doi.org/10.3390/S23063163

Wood, R. W. (1902). On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London, 18(1), 269. https://doi.org/10.1088/1478-7814/18/1/325

Zhao, R., Feng, Y., Ling, H., Zou, X., Wang, M., & Lu, G. (2023). Enhanced terahertz fingerprint sensing mechanism study of tiny molecules based on tunable spoof surface plasmon polaritons on composite periodic groove structures. Sensors, 23(5), 2496. https://doi.org/10.3390/S23052496

Downloads

Published

01.12.2024

How to Cite

Ataii, M. R., & Mostafavi Amjad, J. (2024). Simulation of Periodic 6-Point Shuriken Nano-Structures to Use in SPR Sensors. Optimum Science Journal, (2), 1–7. https://doi.org/10.5281.zenodo.13754118

Issue

Section

Articles