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ARTICLE INFO  ABSTRACT 

Received 30 September 2024  Graphene is excellent material and is highly potent in terms of mechanical, 

electrical, optical, and thermal properties. Owing to these features, this 

material is used as a nanofiller for metal-based composites. Although many 

studies have focused on different attributes of graphene, the most remarkable 

is its electrical conductivity. In addition, copper, which exhibits one of the 

highest electrical conductivities among metal materials, is used in many 

different fields, especially in the electrical-electronics industry. Therefore, 

studies on the changes in the electrical properties of composites obtained using 

these two materials have expanded in recent years. In this study, the electrical 

properties of copper-graphene based nanocomposites produced using powder 

metallurgy are investigated. The changes in the electrical conductivity of the 

composites compared to the pure specimen are discussed in terms of graphene 

reinforcement and processing methods. The production methods and mixing 

techniques that achieve the most suitable electrical conductivity values have 

been comparatively evaluated. The graphene amount was considered in terms 

of production cost. 
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1. Introduction  

Research on materials has an extremely important place in the development of technology. Traditional solutions in 

many fields of science, such as nanotechnology, medicine, and engineering, are changing because of newly developed 

elements. By utilizing these technologies, composites with better properties than the materials that comprise their 
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structural components can be produced by combining multiple substances (Janas & Liszka, 2017; Katiyaret al., 2021; 

Ranjan & Bajpai, 2021). 

 

Among these superior ingredients, graphene-reinforced copper matrix composites constitute an important research 

topic. The superior temperature resistance, good corrosion resistance, and high conductivity seen in some studies 

make these materials stand out (Jamwal et al., 2020). 

 

The high electrical and thermal conductivity of copper, which is the most important building block of copper–

graphene nanocomposites, has come to the fore and become an indispensable element of the electronics industry. As 

a transition metal, Cu has a face-centered cubic crystal structure. It is solid at room temperature with a solid density 

of approximately 8.96 g/cm3. The most important mechanical properties of copper are its soft, ductile, and machinable 

nature. However, these features narrow the usage area because they cause plastic deformation (Almonti et al., 2022; 

Guo et al., 2007; Schlesinger et al., 2011; Varol et al., 2022; Zhang & Han, 2022) 

 

Graphene, an allotrope of carbon, is a one-atom-thick, two-dimensional, honeycomb lattice material that can transmit 

electricity, heat, and light. Owing to these properties, it has been used in many fields of industry and science. The 

sigma bonds in graphene are strong. Therefore, while making significant contributions to the mechanical properties, 

this material also exhibits high heat dissipation. There are many derivatives of graphene (Gr), such as graphene oxide 

(GO), reduced graphene oxide (RGO), and graphene nanoplatelets (GNPs) (Ali et al., 2021; Hidalgo-Manrique et al., 

2019; Kaiser, 2018; Murmu et al., 2022; Utpat & Kulkarni, 2022; Zhang et al., 2020) 

 

Graphene, which is used in many different fields, has great potential for research applications (Elmgerbi et al., 2022; 

Jeganmohan et al., 2020; Murmu et al., 2022). The structural features of graphene are detailed in Table 1. 

 

Table 1. Important properties of graphene (E.R.=%±3) (Asgharzadeh & Eslami, 2019; Hansora & Mishra, 2017; Geim & 

Novoselov, 2007; Güler & Bağci, 2020; Kumar & Xavior, 2014; Shao et al. 2020; Zhang, 2022) 

No Properties of GNPs Values 

1 Purity Degree  (%) 99 

2 Mass (bulk) density (g/cm3) ∼0,3 

3 Real Density (g/cm3)  2,25 

4 Thickness (nm) ∼1-2 

5 Surface Area (m2/g) 2600 

6 High-temperature resistance  (−)75 / (+) 200 ºC  

7 Thermal Conductivity (WK-1/m)  4840-5300 

8 Electron Mobility cm2 / (V.s) ∼2,5×105 

9 Elasticity Module (TPa) ∼1 

10 Tensile strength 130 GPa 

11 Young modulus ∼1 TPa 

 

Atoms are one of the smallest building blocks of matter in the size range of about 1-3 nm. Atoms can come together 

to form nanoclusters. If at least one dimension of more than half of these structures that constitute a substance is 

smaller than 100 nm, the substance is called a nanomaterial (Binns, 2010). Nanocomposite comprises the 

combination of two or more different materials. At least one of these materials must be at the nanoscale (less than 
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100 nm). Nanocomposite materials have been found in many industries (Fesenko & Yatsenko, 2021; Li et al., 2021; 

Sen, 2020) 

 

Powder metallurgy is an advanced material production method used for the processing of powdered metals. With this 

method, metal powders can be converted into cost-effective and specific products by passing through various 

processing stages. Complex structured parts that require high technology can be produced in sufficient quantity and 

high efficiency at the desired quality standards (German, 2016; Grande & Forno, 2016) 

 

Electrical conductivity is a measure of a material’s ability to conduct electricity. Properties such as structural defects 

of the material, temperature, and impurities can affect the conductivity. Generally, metals have high conductivity 

because there are more electrons that can move freely. Copper is a metal with very good electrical conductivity (6 

107 (Ω.m)-1 at room temperature). Therefore, it has become the basic component of the electrical-electronics industry 

today (Callister & Rethwisch, 2020) 

 

In the International System of Units (SI), the conductivity is expressed in siemens per meter. However, in many 

studies, it is given as a percentage in the International Annealed Copper Standard (IACS). According to standard, the 

electrical conductivity of copper is accepted as 100%, and the electrical conductivities of other metals and alloys are 

calculated as percentages according to this value. Thus, a percentage expression proportional to the conductivity of 

Cu is obtained (Jones, 2013; Lu, 2004). There are some important basic issues to be considered in the production of 

metal-matrix composites. The strong structural properties of the additive materials and the formation of strong bonds 

with the metal components to be added can significantly contribute to the material development. However, graphene 

has a low interfacial affinity with copper. There is also a density difference between them. The homogeneous spread 

of the additive to the composite and the absence of agglomeration are important in terms of improving the mechanical 

properties of the composite. However, graphene tends to agglomerate when forming composites with Cu. Production 

methods and costs are also very important in composite design processes (Kumar & Xavior, 2014) 

 

Most of the examined studies mainly aimed to improve the mechanical and electrical properties of copper. Although 

mechanical, thermal, or tribological properties have been improved in many studies (Akbarpour et al., 2020; Almonti 

et al., 2022; Dong et al., 2021; Fahimi & Abachi, 2021; Forati et al., 2021; Ghodrati & Ghomashchi, 2019; Guo et 

al., 2019; Han et al., 2020; 2021; Iqbal et al., 2020; Katarkar et al., 2021; Khamaj et al., 2021; Lasio et al., 2018; 

Pingale, Belgamwar & Rathore 2020a, 2020b; Yao et al., 2016; Zhang et al., 2019; Zhao et al., 2020) electrical 

properties have only been relatively improved (Chen et al., 2016; Huang et al., 2016; Jagannadham, 2012b; Varol et 

al., 2022; Xiong et al., 2015). 

 

In this study, the electrical conductivities of composites formed from Cu and graphene were investigated with 

reference to consolidation methods and additive ratios. The results obtained from studies with the best conductivity 

values according to these two parameters are comparatively presented. Production methods are also mentioned. Thus, 

a preliminary idea was given to researchers interested in the subject before starting their studies. 



OPS Journal, 3 (2025), 51-65 

 

54 

 

2. Methodology 

Table 2 shows the results of 14 different studies on copper/graphene composites according to production route, 

mixing method, and reinforcement rate. 

 

Table 2. Results of studies on graphene reinforced copper composites. 

No Route Mixing type 

The reinforcement 

rate of best result 

(%) 

Electrical 

conductivity 

(% IACS) 

Rate of 

increase or 

decrease 

compared 

to the Pure 

Cu (%) 

Reference 

1 
Spark plasma 

sintering 
Sonication 

Cu/0.13 wt.% GNP–

Ni 
Composite: 92.9 (- 6%) 

(Jiang, Zhou & 

Liu 2017) 

         Pure Cu:  99.1     

2 
Spark plasma 

sintering 
Stirring Cu 0.3 wt.% GNPs Composite: 82.4 (- 15%) 

(Jiang et al. 

2016) 

         Pure Cu:  99.1     

3 
Spark plasma 

sintering 

Molecular-level 

mixing 
Cu 0.5 wt.% GNPs Composite: 83.5 (- 13.5%) (Si et al. 2017) 

         Pure Cu: 96.5     

4 
Spark plasma 

sintering 
Wet mixing Cu-0.35 wt.%Gr Composite: 90 (- 8.16%) 

(Yang et al. 

2022) 

         Pure Cu: 98     

5 Hot-pressing Ball milling 1 wt. % GNS Composite :94 (+22%) 
(Salvo et al. 

2019) 

         Pure Cu: 77     

6 
High pressure 

torsion (HPT) 

Mechanical 

milling 
10 wt. % Graphene Composite: 87 (- 11.22%) 

(Khobragade et 

al. 2019) 

         Pure Cu: 98     

7 
Hot isostatic 

pressing (HIP) 
Wet mixing Cu-2 vol% GNPs Composite: 77 (- 1.28%) 

(Saboori et al. 

2017) 

         Pure Cu: 78     

8 
Spark plasma 

sintering 

Molecular-level 

mixing 
Cu 0.2 vol% GNPs Composite: 90 (-3%) 

(F. Chen et al. 

2016) 

         Pure Cu: 92.5     

9 Hot-pressing Ball milling 
Cu 0.15 wt.% Ag-

RGO 
Composite: 93 (+18%) 

(Luo et al. 

2017) 

         Pure Cu: 81     

10 Hot-pressing 
Preform 

impregnation 
Cu 1.2 vol% RGO Composite: 98 (+2%) 

(Xiong et al. 

2015) 

         Pure Cu: 96     

11 
Conventional 

sintering 
Ball milling Cu 0.5 wt.% GNPs Composite: 78.6 (- 15.5%) 

(Varol & 

Canakci 2015) 

         Pure Cu: 93     

12 
Liquid-phase 

sintering 
Ball milling 

W70Cu30-0.5 wt.% 

GO 
Composite: 45.7 (+9%) 

(Akhtar et al. 

2009) 

         Pure Cu: 42     

13 Electrodeposition  Without stirring 
Cu-0.11 vol-fraction 

RGO 
Composite: 97.7 (+19%) 

(Jagannadham, 

2012b) 

         Pure Cu: 81.8     
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14 

Chemical vapor 

deposition (CVD) 

  Composite: 98 (- 17.36%) 
(Qiao et al.  

2018) 

+ 

Catalytic 

pyrolysis 

(Pyrolysis 

temperature 

:800°C) 

 + 

Cold-rolled 

+ 

Sintering 

         Pure Cu: 83.5     

 

The most important factors affecting the powder metallurgy process are the type of material, the mixing method used 

for the homogeneous distribution of the powder mixture, the method applied to produce the bulk material, and the 

sintering parameters. In addition, the conditions of the environment in which these steps take place should also be 

considered. For this reason, the methods used in some of the studies listed in Table 2 are mentioned. 

 

According to Jiang et al. (2016), in previous studies, RGO (Reduced graphene oxide) was generally used as the 

graphene additive of copper-graphene composites. In this study, they showed that PG (pristine graphene) is a better 

graphene source than RGO. First, to prepare PG dispersion, PVP (polyvinyl pyrrolidone) was dissolved in water. To 

coat PG with PVP, a PG liquid suspension was added to the PVP solution and mixed for 30 min. Vacuum filtration 

was used to remove excess PVP from the water. An aqueous solution (3 wt.% PVA) was prepared from PVA and 

copper powders. Copper powder was added to the solution and mixed for 1 h. Vacuum filtration and rinsing were 

performed to remove excess PVA from the solution. Thus, PVA-adjusted copper powders were obtained. The 

resulting powders were divided into two groups in equal amounts. PVP-modified PG or GO solution was added 

dropwise to the aqueous solution produced with these powders and stirred. The stirring was stopped when the solution 

was colorless and transparent. The resulting product was rinsed after filtering. They were dried at 353 K for 12 h to 

obtain composite powders. Finally, the powders were processed at 573 K for 30 min and at 923 K for 2 h under gas 

flow; this mixture was a hydrogen-argon mixture, most of which was argon. A composite powder mixture was 

obtained. The samples were sintered by the spark plasma sintering method under 30 MPa pressure at 973 K for 5 

min. Si et al. (2017) examined the effect of TiC (Titanium carbide) or VC (Vanadium carbide) coating on GNP–Cu 

composites. Some GNPs were mixed in ethanol for 1 h. The obtained liquid solution was then mixed with NaCl-KCl 

or LiCl-KCl molten by ball milling at 250 r/min speed for 12 hours. NaCl-KCl solution was used for the TiC coating 

of GNPs, and LiCl-KCl solution was used for the VC coating of GNPs. Drying and grinding processes were carried 

out to obtain a homogeneous mixture. After mixing this mixture with pure Cu powder, it was heated in an argon 

atmosphere in a quartz tube furnace at 850 °C for 1 h to obtain TiC-coated GNPs. To obtain the VC-coated GNPs 

under the same conditions, they were kept at 750 °C for 6 h. These products were mixed with Ti and GNPs at various 

concentrations after washing and drying. To obtain copper composite powders, GNP powders were mixed in an 

alcohol-containing solution containing copper ions. Then, C6H12O6 was added and mixed for 30 min. NaOH was 

slowly added to the solution, and stirring was continued. The solution was kept constant at 60 °C for 4 hours. 
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Processes such as washing and drying were applied to produce Cu-GNPs composites. Compressed composite 

powders were sintered by the spark plasma sintering method under a pressure of 35 MPa at 700 °C and a heating rate 

of 50 °C/min. Yang et al. (2022) mixed copper powder and wheat flour were mixed with ball-milling method. There 

is a 10:1 material ratio between the ball and powder. They were milled for 5 h at 423 rpm. Coated Cu powders were 

heated for 10 min in a vacuum tube furnace containing Ar (100 sccm) and H2 (40 sccm) gases at 800 °C with a 

heating rate of 10 °C /min. Three different weight ratios of Gr-Cu composite powder were produced. The produced 

composite powders and pure Cu powder were then mixed by a wet mixing method. The samples were sonicated with 

ethanol at room temperature for 1 h. Powder solution stirred at 65 °C at 800 rpm. During mixing, ethanol was 

evaporated, and a homogeneous mixture was obtained. Finally, they were sintered by the spark plasma sintering 

method under 45 MPa pressure at 650 °C for 8 min. Saboori et al. (2017) used a wet mixing method for the 

homogeneous distribution of GNPs (Rashad et al. 2015). Copper and GNP powders were ultrasonicated in ethanol 

for 45 min. The GNP slurry was combined with the Cu powder suspension dropwise. After powder blend was 

ultrasonicated for 1 h, it was filtered and dried at 80 °C for 6 h. Composite powders were consolidated in dies to 

produce bulk samples. The samples were then sintered at 950 °C for 2.5 hours under N2 atmosphere. Wang et al. 

(2016) obtained graphene, which was used in their studies, according to modified Hummers methods Ong et al. 

(2012). After processing the graphene, it was sonicated in an ethyl alcohol solution for several hours. Copper powder 

was added to the liquid suspension mixture and stirred for 20 h. The mixture was heated at 80 °C and dried under 

vacuum for 24 h. The consolidation process took place in two stages. First-stage composite powders were vacuum-

sintered at 950 °C. In the second stage, the sample was hot pressed at 600 °C under 30 MPa pressure. Luo et al. 

(2014) used a one-step reduction method to produce Ag-RGO powder blend from GO (graphene oxide) and AgNO3 

(silver nitrate) Ji et al. (2015). Ag-RGO and Cu powders were mixed using the ball milling method which applied at 

500 rpm rotation speed of 500 rpm for 5 h. Treated powders were sintered at 800 °C under pressures ranging from 

30 to 60 MPa by the uniaxial hot-pressing method under vacuum conditions. 

 

3. Results and Discussions  

The results of the eight studies with the best electrical conductivity among the studies listed in Table 2 and the factors 

affecting the electrical conductivity are examined. In Table 3, these studies are presented together with data on 

production methods, mixing types, and reinforcement ratios. 

 

Table 3. Best eight electrical conductivity results 

No Route Mixing type 
The reinforcement 

rate of best result (%) 

Electrical 

conductivity 

(% IACS) 

Rate of increase 

or decrease 

compared to the 

Pure Cu (%) 

Reference 

1 Hot-pressing Ball milling 1 wt. % GNS Composite :94 (+22%) 
(Salvo et al., 

2019) 

2 Electrodeposition 
Without 

stirring 
Cu-0.11 vol% RGO Composite: 97.7 (+19%) 

(Jagannadham, 

2012b) 

3 Hot-pressing Ball milling Cu-0.15 wt. % Ag-RGO Composite: 93 (+18%) (Luo et al., 2017) 
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4 
Liquid-phase 

sintering 
Ball milling W70Cu30-0.5 wt.% GO Composite: 45.7 (+9%) 

(Akhtar et al., 

2009) 

5 Hot-pressing 
Preform 

impregnation 
Cu 1.2 vol% RGO Composite: 98 (+2%) 

(Xiong et al., 

2015) 

6 
Hot isostatic 

pressing (HIP) 
Wet mixing Cu-2 vol% GNPs Composite: 77 (- 1.28%) 

(Saboori et al., 

2017) 

7 
Spark plasma 

sintering 

Molecular-

level mixing 
Cu 0.2 vol% GNPs Composite: 90 (-3%) 

(Chen et al., 

2016) 

8 
Spark plasma 

sintering 
Sonication Cu 0.13 wt.% GNP–Ni Composite: 92.9 (- 6%) 

(Jiang et al., 

2017) 

 

According to the values given in Table 3, Salvo et al. (2019) achieved a 22% increase in the electrical conductivity 

value of the sample sintered by the hot-pressing method using 1 wt.% GNS (graphene nano sheets). In addition, they 

preferred the ball milling method. Similar to previous studies, they observed the agglomeration of few-layer graphene 

nanosheets. Agglomerations occurred particularly within grain boundaries. However, it was lower than those of other 

studies. In this study, it is emphasized how variables such as consolidation temperature, application pressure, and 

application time, which are used in other methods using the hot-pressing method, affect the electrical conductivity 

and hardness properties. While changing the consolidation temperature and application pressure from the application 

parameters, the time was kept constant. As a result, the electrical conductivity was observed to increase when the 

sintering temperature was slightly reduced and the application pressure was slightly increased. Jagannadham (2012a) 

obtained a 19% increase in the electrical conductivity value of the Cu-Gr composite films using the electrodeposition 

method. In addition, the authors used 0.11 vol% RGO (reduced graphite oxide). During the application of this method, 

magnetic stirring was used as the mixing method. When the mixing process was applied, the accumulation of 

graphene on the composite film increased and the electrical conductivity decreased. When magnetic stirring was not 

applied, the accumulated mass decreased and the electrical conductivity increased. Luo et al. (2017) observed a 18% 

increase in the electrical conductivity of the pattern sintered by the hot-pressing method when 0.15 wt.% Ag-RGO 

was used. In this study, silver was found to increase the interfacial bonding between graphene and copper. For the 

five different samples, the applied pressure was varied by keeping the temperature and time constant. Thus, the best 

electrical conductivity was obtained at an appropriate pressure (50 MPa). Akhtar et al. (2009) achieved a 9% increase 

in the electrical conductivity of a specimen sintered by liquid-phase sintering using 0.5 wt.% GO. Graphene was 

added to a pure W70Cu30 composite powder with an electrical conductivity of IACS 42%. The highest electrical 

conductivity value (~46% IACS) was obtained at a 0.5 wt.% graphene additive. After this value, the conductivity 

decreased rapidly. When the graphene additive content was 1 wt.%, WC and W2C (tungsten carbide) phases formed 

because of the high carbon content. The formation of these phases negatively affects the electrical conductivity. After 

the ball milling and sintering processes, some of the graphene was dispersed on the WCu composite powder and 

retained its form, but some of it was damaged by losing its structure. Xiong et al. (2015) achieved a 2% increase in 

the electrical conductivity of the sample sintered by the hot-pressing method using 1.2 vol% RGO. Inspired by the 

natural mother-of-pearl structure, the authors designed a skeleton similar to a brick-and-mortar structure. In this 

structure, rGrO was used as the brick, and Cu was used as the mortar. Copper was chosen for its enhanced electrical 

properties. Thus, both the mechanical properties and electrical conductivity were increased by the formation of the 

copper layer in the intermediate layer. Saborri (2017) obtained a 1.28% decrease in the electrical conductivity of the 
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Cu-GNPs composite films sintered by hot isostatic pressing (HIP) using 2 vol% GNPs (Graphene nanoplatelets). 

Using other studies, the author thinks that the decrease in the size of the grains or the large number of pores, 

dislocations, and voids in the composite may have made electron transfer difficult (Akhtar et al., 2009; Rajkumar & 

Aravindan, 2013) Two different reconsolidation processes were applied. As a result of these processes, a decrease in 

the number of pores and a slight increase in grain size were observed. The electrical conductivity did not substantially 

change until the addition of 2.0 vol of graphene, after which it began to decline. F. Chen et al. (2016) observed a 3% 

decrease in the electrical conductivity value of the pattern sintered by the spark plasma method when 0.2 vol% GNPs 

were used. In the present study, there was no significant decrease in electrical conductivity (85% of pure copper) 

until the graphene contribution was 0.4 vol.%. After this value, there was a significant decrease. The amount of 

graphene additive is important in this sense. The authors speculate that the reduced electrical conductivity is due to 

a decrease in grain size and an increase in dislocation density. In addition, the weak affinity between Cu and graphene 

and the gaps formed as a result of sintering increased the insulator (Nan et al., 1998; Yu et al., 2022). Jiang (2017) 

observed a 6% decrease in the electrical conductivity value of a specimen sintered by the spark plasma method using 

0.13 wt.% GNP–Ni. In this study, untreated graphene was coated with Ni via electrolysis. Afterwards, these powders 

were mixed with pure Cu powders and used in the production process. The main purpose is not to experience much 

loss in electrical conductivity while increasing the mechanical properties. Previous studies have shown that oxygen 

has a negative effect on electrical conductivity. In this study, Ni is assumed to act like oxygen and has a negative 

effect on electrical conductivity. 

 

4. Conclusions 

There are some important findings that stand out in studies in which the best conductivity results were obtained. The 

conclusions drawn according to the data obtained with reference to Table 3 are listed below. 

• The most important factors affecting the electrical conductivity are graphene deposition at grain boundaries, oxide 

formation, dislocations, and pores. The selection of parameters for the production conditions and material 

properties that minimize the effects of these factors is important for the objectives of the studies. 

• The best sintering methods in terms of the electrical conductivity of copper graphene composite materials are hot 

pressing and electrodeposition. 

• When similar sintering and mixing methods are applied, if the material effect is not considered, when Ag is added 

to the graphene additive material, there is a significant decrease in the amount of graphene to be added. 

• In Cu graphene composites, an increase in electrical conductivity was observed when Ag (silver) was added to 

the graphene. 

• When hot pressing is chosen as the production method, the most effective mixing method is ball milling. However, 

other mixing methods can also be used. 

• Although using oxide component materials such as RGO or GO as additive materials can have a negative effect 

on the electrical conductivity due to the oxygen that may arise, this problem can be overcome with composite 

production methods.  
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• When graphene and Ni (nickel) are used together as additive materials, a decrease in the electrical conductivity 

occurs. 

• If the hot-pressing method is selected, the pressure applied will be very important. 

• The presence of tungsten carbide (WC and W2C) in copper graphene composite materials reduces the electrical 

conductivity, but there is a serious decrease in the graphene-to-graphene ratio. This situation can be evaluated in 

terms of cost. 

• To increase both mechanical and electrical properties, it may be appropriate to develop hybrid methods that 

include both or one of the hot-pressing and electrodeposition methods. 

• In terms of graphene additive efficiency, spark plasma sintering and electrodeposition are among the best 

production methods. 

 

In the future, detailed studies can be carried out with the properties of Cu-GNPs composites such as wear and 

corrosion. Conductivity changes can be studied by adding different reinforcement materials to these composites. In 

addition, the theoretical background of electrical conductivity can be added to pave the way for new studies. Studies 

can also be carried out on customized products considering the requirements of the industry. For instance, physical 

changes in switching elements can be studied in electrical devices where electrical conductivity is important. 
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